
The effect of circuit parameters on ferroresonant solutions in an LCR circuit

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 7065

(http://iopscience.iop.org/0305-4470/31/34/010)

Download details:

IP Address: 171.66.16.102

The article was downloaded on 02/06/2010 at 07:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/34
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 7065–7076. Printed in the UK PII: S0305-4470(98)89529-2

The effect of circuit parameters on ferroresonant solutions
in an LCR circuit

H Lamba†, S McKee‡ and R Simpson§
† SCCM Program, Division of Mechanics and Computation, Stanford University, CA 94305-
4040, USA
‡ Department of Mathematics, University of Strathclyde, Glasgow G1 1XV, UK
§ Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow
G1 1XW, UK

Received 26 November 1997, in final form 19 June 1998

Abstract. We use the Preisach model to easily and accurately match the magnetic response
of a laboratory-scale transformer and numerically simulate a series LCR circuit. Excellent
agreement is obtained with experiment over a wide range of parameters for both non-resonant
and ferroresonant behaviour. We then use each of the system’s three independent parameters as
bifurcation parameters and search for additional ferroresonant solutions, thus demonstrating the
potential predictive power of such simulations.

1. Introduction

The study of magnetic circuits is of great importance in electrical engineering. The use of
transformers and inductors is universal in power generation and distribution networks.

The magnetic response of a transformer is approximately linear for low values of
the applied magnetic field (i.e. low currents and voltages) and thus the linear theory can
accurately determine the normal operating state of the system. However, all magnetic
characteristics must saturate at large applied fields and at intermediate field strengths the
phenomenon of magnetic hysteresis also becomes significant. Thus, there may exist other
stable states at the same parameter values as the normal operating state which have higher
currents and voltages. These co-existing solutions have been termedferroresonantwhen
they have been observed by engineers.

If the magnetic characteristic is assumed to be linear then the solution of the basic
equation is referred to as the non-resonant response. If the magnetic characteristic is
nonlinear then at least two stable states can occur. If the result has a significant one-third
harmonic of the main frequency then the circuit is said to be operating in a subharmonic
state. When the current peak amplitude is very large, 20–30 times the normal, then the
circuit is said to be exhibiting main resonance. These have been observed and have been
well known to engineers for many years (see e.g. [1]).

Many models have been used to represent theB–H characteristic and these can be
broadly classified into two groups. In the first group, the flux density is described by a single-
valued function of the applied magnetic field, e.g. by linear, piecewise-linear, polynomial or
trigonometric functions. Using such functions it is possible to apply analytic methods such
as harmonic balance to obtain results on the amplitudes and regions of stability of certain
types of ferroresonant solution [2–7]. However, single-valued functions cannot represent
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effects due to magnetic hysteresis. Previous work [8, 9] and the authors’ experience with
laboratory-scale transformers have shown that these effects are significant in two different
ways. First some ferroresonant solutions may not exist in the numerical simulation. Second,
the residual magnetization of the transformer at start-up can determine whether the non-
resonant (normal operating) solution or a ferroresonant solution is achieved. For these
reasons we believe that the use of such single-valued representations is not sufficient for
accurate modelling of magnetic circuits.

The second group of models, which are much closer to the observed behaviour of
real materials, do include magnetic hysteresis effects and theB–H loops are no longer
representable by single-valued functions. Examples are the Preisach [10] and Jiles–Atherton
models [11]. These models suffer from two drawbacks. First it is much harder to accurately
fit an experimentally determined magnetic characteristic and second the resulting circuit
equations are likely to be analytically intractable. We shall show how to match the Preisach
model to a givenB–H characteristic and obtain excellent agreement over a wide range of
operating conditions for a sinusoidally driven series LCR circuit. This is one of the simplest
circuits capable of ferroresonant behaviour and has been studied previously [4, 5, 7, 12, 13] as
a model for a single-phase transformer; yet even this simple circuit is still poorly understood.

The paper is organized as follows. In section 2 we show how to fit the Preisach model,
based upon the results in [14, 15], to a given transformer characteristic using solely the
measurements of the upper bounding curve of the major hysteresis loop. In section 3 we
incorporate the Preisach model into the equation for a series LCR circuit and describe
how to numerically integrate the system. Then we compare the numerical simulation with
experimental results for an actual laboratory transformer at a particular set of parameter
values where there exists a non-resonant solution and two ferroresonant solutions. We show
that all three solutions are accurately simulated by comparing the current waveforms. Then
in section 4 we perform a computer search for additional ferroresonant solutions by varying
each independent parameter in turn and randomly choosing initial conditions and remanence
conditions.

2. The Preisach model

The Preisach model [10] is still one of the best mathematical descriptions of magnetic
hysteresis available and is potentially extremely accurate. A detailed description of the
model and its numerical implementation can be found in [16]. A major problem with
applying the Preisach theory is that it requires the accurate determination of a two-parameter
functionF(α, β) (see [8]) (obeying certain mathematical constraints) which represents the
magnetic response. This perhaps explains why the Preisach theory has been used so little
in numerical simulations.

For a more detailed description of the Preisach theory the reader is referred to [8] (or
[16]); it will be assumed that the reader is cognizant with [8] and we shall employ the
notation of that paper. Our procedure for determining the two-parameter functionF is,
however, a little different from [8] and so this section will deal with how this function was
approximated.

An elegant approach to approximatingF is given in [15] which only requires the upper
boundingB–H curve, say, to be measured. This can be done by taking the inductor core
close to positive saturation and then reducing the applied field, taking measurements until
the core is close to negative saturation.

Let the upper bounding curve of the hysteresis loop bef +(H) and the lower curve be
f −(H). By symmetry, we must have thatf −(H) = −f +(−H) so let us assume that the
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upper curve has been measured experimentally and fitted by a smooth approximating curve,
which we henceforth refer to asf +(H).

Then

F(α, β) = −f
+(β)− f −(α)

2
+
∫ β

−∞

∫ ∞
α

w(x, y)dx dy (1)

wherew(x, y) is a non-negative weight function describing the distribution of the elementary
loops (see [8]).

In order to proceed further it is assumed that the functionw can be decomposed, via a
separation of variables, into

w(α, β) = WA(α)WB(β) (2)

for some functionsWA andWB. Following [14] these functions can be expressed in terms
of f + and (1) becomes

F(α, β) = −f
+(β)+ f +(−α)

2
+G(α)G(−β) (3)

where

G(α) = f +(α)+ f +(−α)
2
√
f +(α)

α > 0

or

G(α) =
√
f +(−α) α < 0.

The above equation forF(α, β) matches the outer hysteresis loop to within the error of
the approximating functionf +(H). The assumption (2) determines the magnetic response
inside the major loop and was found in [15] to give good experimental agreement for the
magnetic materials tested.

In [8], for F to correspond to a valid Preisach function we observed that it must possess
the following properties:

(I) F(α, β) = F(−β,−α), i.e. symmetry;
(II) lim α→∞ F(α,−α) <∞, i.e. hysteresis loop saturates as a finite value;
(III) dF

dβ 6 0, dF
dα > 0, i.e. magnetic permeabilitydBdH > 0 everywhere.

Clearly (I) is satisfied automatically. Conditions (II) and (III) will be satisfied if

f +(H) is strictly increasing (4)

lim
H→∞

f +(H) = − lim
H→−∞

f +(H) (5)

and

f +(H) > −f +(−H) ∀H. (6)

Each of these three conditions is physically realistic and for accurate measurements
any reasonable approximating function should satisfy them. We therefore search for an
approximation of the form

f +(H) =
N∑
i=1

Ai tanh(PiH + Ci) (7)

where the{Ai}Ni=1, {Pi}Ni=1 and {Ci}Ni=1 are constraints to be determined. Conditions (4)
and (5) are automatically satisfied if the constants{Ai}Ni=1 and {Pi}Ni=1 are all positive.
Similarly, condition (6) will be satisfied if additionally{Ci}Ni=1 are all non-negative. Thus
an approximating functionf +(H) that satisfies (4)–(6) can be found by minimizing the
least-squares error subject to the above constraints. This can easily be solved using standard
commercial software, for example routine E04KCF of the NAG library [17].
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Figure 1. A series LCR circuit.

Table 1. The coefficients used to match the transformer characteristic.

i Ai Pi Ci

1 0.476 31 0.001 1125 0.183 97
2 0.459 64 0.004 4721 0.226 87
3 0.738 76 0.054 8370 2.042 38

3. A ferroresonant LCR circuit

3.1. The circuit equations and numerical integration

The equation for the series LCR circuit (see figure 1) can be written as a set of first-order
ordinary differential equations

dH

dt
= 1

nA

√
2V sin(ωt)− VC − `RH/n

µ0+ dB
dH + `

n2A
L

(8)

dVC
dt
= H`

Cn
(9)

dB

dt
= dB

dH

dH

dt
(10)

where the independent variables are the applied magnetic fieldH (A m−1), the magnetic
flux densityB (teslas) andVC , the voltage across the capacitor. The parameters are the
mean flux path length̀ (m), the number of turnsn on the transformer, the cross sectional
areaA (m2), the RMS driving voltageV , the angular frequencyω = 2πf , the resistance
R (�) and the leakage inductanceL (A m−1). Note also that the currenti = `H/n.

In order to close the system of equations we need an expression fordB
dH . This is where the

Preisach model and most of the computation comes in. This is calculated by differentiating
the last term of (2) or (3) (of [8]) depending on whetherH is decreasing or increasing.
Thus dB/dH (= dM/dH plus a constant) is discontinuous whenever dH/dt changes sign.
It is also discontinuous whenever a maximum or minimum is wiped out since the number
of terms in (2) and (3) (of [8]) will change (see the earlier paper [8] for details).

The equations are integrated using a variable-step method suitable for stiff systems.
Whenever a discontinuous change in dB/dH occurs, the program halts the integration,
updates the sets of extrema and then restarts the integration. The initial conditions for the
integration are the values ofH andVC at timet = 0, the point-of-wave of the forcing cycle
and the sets of extrema{Ei} and {ei} (i.e. the magnetic history of the material) (again see
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Figure 2. Comparison of current waveforms for (a) the non-resonant, (b) the period-3
subharmonic resonant and (c) the main resonant solutions.
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Figure 2. (Continued)

the earlier paper [8] for details). The numerical results are presented in sections 3.2 and 4.
Let us for the moment ignore the term representing the leakage inductance,L, which

is usually small (numerically it has been observed that this only affects the amplitude of
the main ferroresonance). Then the equations (8)–(10) have seven parameters (for a given
B–H characteristic),V,ω,C,R, n,A and`. By making the following coordinate change,

V ′C = (n/`R)VC t ′ = ωt

we obtain the following system of equations:

dH

dt ′
= R`

ωn2A

√
2V n
`R

sin(t ′)− V ′C −H
µ0+ dB

dH

(11)

dV ′C
dt ′
= H

ωCR
(12)

dB

dt ′
= dB

dH

dH

dt ′
. (13)

Thus we have reduced the number of free parameters to three; note that theB–H
characteristic is unchanged. Thus, for any given transformer characteristic, the circuit
parameters are given by1

ωCR

√
2V n
`R

and R`
ωn2A

, and these can be independently varied by
changingC, V andA, respectively. In section 4 we shall use each of these parameters as
a bifurcation parameter, that is we shall vary each parameter in turn and observe the effect
upon the ferroresonant solutions.
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Figure 3. A bifurcation diagram on a log–log scale as the capacitance is varied. The value of
the current at each current maximum is plotted against capacitance. See text for a description
of the different solutions.M: sample results obtained experimentally.

3.2. Comparison with experiment

Measurements of the flux densityB (in teslas) against the applied magnetic fieldH
(in A m−1) were made of the upper bounding curve of a single phase 1 kVA 250 V
laboratory transformer. After subtracting off the airline an approximation to the curve
of the form (7) withN = 3 terms was found using the routine E04KCF from the NAG
library [17]. Approximately 30 data points were used covering a large range of positive
and negativeH with the greatest concentration at the ‘knee’ of the curve. The routine,
which searches iteratively for the optimal coefficients using a modified Newton algorithm,
generated different approximations depending upon the random starting conditions used.
This is due to the least-squares minimization problem having many local minima but all the
approximations generated were suitable with the error being well within the experimental
error of the measurements.

The coefficients that were used for the numerical simulations in this paper are given in
table 1. These were chosen because they had the smallest residual, approximately 5×10−4.
This approximation was incorporated into the Preisach model and the circuit equations, as
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Figure 4. A period-2 solution that bifurcates from the main resonant solution.

described in sections 2 and 3, and [8].
The parameters used to test the numerical simulation wereV = 90 V, R = 1.91 �,

C = 30 µF, f = 50 Hz,n = 237,A = 0.00252 m2, ` = 0.434 m andL = 0.0017 A m−1.
Thus 1

ωCR
= 55.55,

√
2V n
`R
= 36 390 and R`

ωn2A
= 1.864× 10−5. At these parameters three

different stable solutions were observed to occur experimentally: the non-resonant solution,
and two ferroresonant solutions—one with a high peak current and the same frequency as
the driving voltage (main resonance) and another with a frequency one-third that of the
driving voltage and a lower peak current (subharmonic resonance). The numerical and
experimental current waveforms for each are compared in figures 2(a)–(c) respectively and
in each case there is excellent agreement. There was also a very close correspondence
between the initial conditions and the solution that was reached—an investigation into the
dependence upon initial conditions will be reported elsewhere.

4. Bifurcation diagrams

We can now use the numerical simulation to search for other ferroresonant solutions and
examine the effect of changing the three independent parameters defined in section 3.

4.1. Varying the capacitance

The same program used to simulate the circuit of section 3.1 was run several thousand
times with different values ofC and also with random point-of-wave switching, initial
charge on the capacitor and magnetic history as defined by{Ei} and {ei} (see [8]). All
the other parameter values and theB–H characteristic were fixed. Every time that a new
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Figure 5. A bifurcation diagram as the RMS driving voltage is varied. The value of the current
at each current maximum is plotted against voltage. See text for a description of the different
solutions.M: sample results obtained experimentally.

ferroresonant solution was found, the program followed the solution using the capacitance as
a bifurcation parameter. In this way a complete bifurcation diagram shown in figure 3 was
obtained for the circuit parameters used in section 3.2 for the capacitance range 1–1000µF.

The vertical axis in figure 3 plots the current value at each current maximum against the
capacitance on a log–log scale. Curve A corresponds to the non-resonant solution shown in
figure 2(a). Because there is just one current maximum per cycle, this is just a single curve.
Similarly, curve B is the main resonant solution of figure 2(c) and the three curves labelled
C are the period-3 subharmonic resonant solutions of figure 2(b). Curve D represents a new
ferroresonant solution shown in figure 4. This is a period-2 resonant solution that bifurcates
from the main resonance and co-exists for a narrow capacitance band. The existence of this
new solution was confirmed experimentally at values very close to those predicted by the
program. Note, that the curves are composed of several different runs with different initial
conditions. This, together with the magnetic memory, gives slightly different values and
explains the slight ‘fuzziness’ of the curves where different runs were spliced together.

If the capacitance is increased beyond 1000µF there are many other solutions, including
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Figure 6. A bifurcation diagram as the cross sectional area,A, of the transformer is varied. The
value of the current at each current maximum is plotted againstA. See text for a description of
the different solutions.

quasiperiodic and chaotic solutions but since they do not co-exist with the non-resonant
solution (which has become unstable) we do not consider them here.

4.2. Varying the driving voltage and cross sectional area

We now carry out a similar procedure to the last section, but instead varying the RMS
driving voltage between 30 and 150 V (keeping the capacitance fixed at 30µF); the resulting
bifurcation diagram is shown in figure 5.

Again A, B and C represent non-resonant, main resonant and subharmonic (period-3)
resonant solutions. Interestingly the period-3 solution loses stability in a period-doubling
cascade at around 70 V (see [8]) but regains stability via an inverse cascade at around 50 V.
Experiments with the laboratory transformer confirm that the solutions shown lose stability
at voltages very close (to within 2 V) to those predicted by figure 5.

Finally, we use the cross sectional areaA as a bifurcation parameter, varying between
0.001 and 0.01 m2. Once more A, B and C represent the three known solutions (figure 6).

As in figure 5 the period-3 solution reappears (labelled D) as the parameter is decreased
further. Interestingly, atA ≈ 0.00115 two of the three current maxima per cycle merge and
disappear leaving a period-3 solution with only one current maxima per cycle as shown in
figure 7.

In the above we have only variedC, V andA independently. One would need to vary all
three together to build up a complete picture of all the existing stable solutions. Nevertheless
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Figure 7. A subharmonic solution with frequency13 that of the forcing.

we have shown that even a circuit as simple as the one studied has a surprisingly rich and
complex behaviour.

5. Conclusions

We have shown that a Preisach representation of a laboratory transformer can be easily
calculated from measurements of the major hysteresis loop and excellent agreement with
experiment is obtained for a ferroresonant LCR circuit. It should be pointed out that the
computational effort needed to computef +(H) from the experimental data is negligible.
This opens the way for software that can take the raw measurements for the upper bounding
curve, together with the circuit configuration and parameters to provide fully nonlinear and
hysteretic circuit simulations. To this end, a detailed study of the effect of the quantity
and distribution of the data points along the upper bounding curve on the approximation of
f +(H) would be useful.

In addition, we have performed a search for ferroresonant solutions over a wide
range of parameters and thus demonstrated the potential predictive power of the numerical
simulations. It seems likely that the qualitative features of the bifurcation diagrams and
ferroresonant solutions presented here will be similar for transformers with differentB–H
characteristics and perhaps even for more complicated circuits.

Of course, real power systems are much more complex than the above laboratory system;
nevertheless in some circumstances a single-phase ferroresonant system can be reduced to a
series LCR circuit. Even where such a reduction is possible, however, the authors have found
that a major difficulty is obtaining accurate measurements of the bounding hysteresis curve—
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data which the transformer manufacturers often either do not capture or make available. The
accurate modelling of the hysteretic properties of transformers is crucial to the prediction
of ferroresonant effects and we hope that this work will also stimulate further efforts in the
area of data collection.
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